HANDOUT: KŐNIG'S LEMMA

Axiomatische Verzamelingentheorie 2013/14: 2nd Semester; block b Universiteit van Amsterdam

http://hugonobrega.github.io/teaching/AxVT/

Theorem (Kőnig's Lemma). For every cardinal κ , we have $\kappa^{cf(\kappa)} > \kappa$.

Proof. We write $\lambda := \operatorname{cf}(\kappa) \leq \kappa$. Fix some cofinal function $g : \lambda \to \kappa$. If $\lambda = \kappa$, the claim follows from Cantor's theorem. Therefore, we can assume that $\lambda < \kappa$. We observe that by definition, $\kappa^{\lambda} \sim \{f : f : \lambda \to \kappa\}$, so it is sufficient to show that there cannot be any surjection from κ onto the set $F := \{f : f : \lambda \to \kappa\}$.

Suppose that $\pi : \kappa \to F$ is an arbitrary function. For $\alpha \in \kappa$, we consider $\pi(\alpha) : \lambda \to \kappa$. Clearly, for every $\alpha < \kappa$, we have that $\operatorname{ran}(\pi(\alpha)) \preceq \lambda$. Therefore, for every $\alpha < \kappa$, we have that

$$R_{\alpha} := \left\{ \left| \{ \operatorname{ran}(\pi(\xi)) ; \xi < \alpha \} \leq \lambda \times \alpha \prec \kappa \right. \right\}$$

So, $\kappa \setminus R_{\alpha} \neq \emptyset$. We define a diagonal function

$$d: \lambda \to \kappa: \beta \mapsto \min(\kappa \backslash R_{g(\beta)}).$$

We claim that $d \notin \operatorname{ran}(\pi)$. Fix an arbitrary $\alpha < \kappa$, and show that $d \neq \pi(\alpha)$. Since g was cofinal, we find $\beta \in \lambda$ such that $g(\beta) > \alpha$. Then, by definition,

$$d(\beta) \notin R_{g(\beta)} = \bigcup \{ \operatorname{ran}(\pi(\xi)) ; \xi < g(\beta) \} \supseteq \operatorname{ran}(\pi(\alpha)).$$

So, in particular, $d(\beta) \neq \pi(\alpha)(\beta)$, and so $d \neq \pi(\alpha)$.

Comments.

1. Normally, this is proved in a more general form. If $\sum \{X_{\alpha}; \alpha < \gamma\}$ is the disjoint union of the sets X_{α} and $\prod \{X_{\alpha}; \alpha < \gamma\} := \{f; \operatorname{dom}(f) = \gamma \text{ and for all } \alpha \in \gamma, \text{ we have that } f(\alpha) \in X_{\alpha}\}$, then if for all $\beta < \lambda$, we have $X_{\beta} \prec Y_{\beta}$, then

$$\sum \{ X_{\beta} \, ; \, \beta < \lambda \} \prec \prod \{ Y_{\beta} \, ; \, \beta < \lambda \}.$$

[How can one see that the above theorem is a special case of this statement? Consider $X_{\beta} := g(\beta) \setminus \bigcup \{g(\eta); \eta < \beta\}$ and $Y_{\beta} := \kappa$.]

2. Not to be confused with another "Kőnig's Lemma" which is a statement about existence of infinite branches in finitely branching trees. Different theorem, different —but related— Kőnig: our Kőnig's Lemma was proved by Gyula Kőnig (1849–1913) who also published under the name "Julius König"; the statement about trees was proved by his son Dénes Kőnig (1884–1944).

q.e.d.